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= % > .., C. elegans is a tiny nematode, broadly used
= as amodel organism in neuroscience.
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The Ca*? transients

The ASH pair of sensory neurons
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Background & Introduction

Its nervous system (305 neurons) is fully
mapped and the wiring diagram is known.
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C. elegans adult, eggs and
larvae, scale bar:0.25mm

The microfluidic platform
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Worms are trapped in the microfluidic

channel, stimulus is delivered to their

nose, Ca?* transients are recorded.
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Ca*? transients are recorded for young &
aged animals, untreated (control) and
exposed to oxidative stress (OS)--4 cases.

Peak: magnitude of response, total
amount of incoming Ca*? ions

Rising slope: time rate of Ca*? influx
Decaying slope: time rate of Ca*? efflux

Modified from Gourgou & Chronis, 2016
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Methods

The system to be modeled:
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machinery that are included in the model
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Model equations
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Parameter estimation
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The Ca?* fluxes for different

components of the model
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In silico knock-out: building a parsimonious model

Results

Ca?* dynamics: the model captures

= Model-PMCA knockout
10F © Experiment
S “"g
= H
o) :
S & 2
3 L
5 : g”‘\ 15
9 : H
B ; a5
- : : A
Lo A ¥
i : p ) e
Ch ] & =
. @
Stimulus o
I | c
i L i i i %
0 10 20 30 40 50 o
(D) g
©
| -
——— Model-IPR knockout (original) —
10F — = Model-IPR knockout (updated) %
*  Experiment L
—_ 0
S ﬁ
I\
N :
c
©
-
(]
9
©
}_
L
o
w
Stimulus
0 10 20 30 40 50 45
Time [s]
40
F L |
(F) § 35
Model-VGCC knockout (original) @ L
o 30
10F — = Model-VGCC knockout (updated) c
*  Experiment E 25
z :
o = 20 F
2 m
© —
5 — 15}
O I—IJ
g X 10t
= L
|_
U
x
T

Stimulus

—%
o

w

aging- and OS-driven changes
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The model suggests plausible parameters changes due to aging and OS

(A) 15 Young stressed worms

10F

Presence in the valid solution

0

S S Y
Lo L0

Goo R e oFO o T e g

Aged unstressed worms

3r
2F
1F
0 i i i

. FP NN ‘
~t~c9¢<"ct’:‘e‘§~f:“‘°v‘c’ g(’i-q@c’o R o STO 0 AR

Presence in the valid solution

(E) 6r Aged stressed worms

8]

~

Presence in the valid solution
N w

Y
T

0
S v Q \&Q

(B)

C}

Relative parameter change [%]

350

300 F

[$2]
o

&
)
T

250 F
200 f
150 |

100 f

-ii%@

o
T

Young stressed worms

°
e
s B —F——oi® o

R

RESS

-100

P (P T O ok 6O o Y e g
4»4«@6‘?“\1?* 0, SR AN
400 Aged unstressed worms
D
— 350 ® (@)]
= <
o 300} @
3 250 O
S ko)
5} —
& 200} =
£ ® o
g 150 F e
g q) m
o 100 F <I> Q
= O
T 50 =
i =
of o @ O
o
I IO CE ©
Pk o & 00 R oo O \l’*O A NV o \i"Q
4».»,@6@“‘3-?“‘ ¢, R o
(F36OOO Aged stressed worms
14000 [ ]

Relative parameter change [%]

12000
10000 |
8000 F
6000 F
4000 f
2000 F

OF

-2000

R
LFoNLT 0%

SN oo SFO o TN e g

-t
o
M

—
D_l

10°
10°

Sensitivity: the model
generates results within the
experimental range
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We propose a model for the Ca?* dynamics in the C. elegans ASH polymodal neuron,
based on intracellular events that unfold as part of the Ca?* signaling machinery.

‘ captures for the first time the dynamics of both the “on” and “off” responses.

can account for changes in the ASH Ca?* dynamics due to age and exposure to
oxidative stress, reflecting, confirming and sometimes predicting the role of each
molecular player modeled in the cellular mechanism that generates Ca?* transients.

can be used to propose and guide future experimental work, targeting
specific molecular players involved in Ca?* dynamics.
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