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Internally localized magnetic fields affect C. elegans locomotion dynamics 
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Background

• The effects of magnetic field (MF) on living organisms is associated 

with activity linked to the modern way of living. (1) 

• C. elegans is a successful resource to study MF effects on various 

types of cells and tissues. (2)

• Nanoparticles uptake by C. elegans worms has been a successful 

means to evaluate toxicity of materials. (3)

• C. elegans locomotion can be used to assess impact on behavior (4)

Objectives

Use locomotion as a quantifiable and revealing behavioral expression 

to determine the effect of MF gradient on C. elegans.

Experimental Setup

1: Objective lens and camera; 2: Electromagnets; 3: NGM plate with C. 

elegans, with schematic of plate orientation; 4: Auxiliary base;  5: 

Bright light source; 6: Power supply; 7:Computer and software.

Methods

Discussion & Conclusions

Acknowledgements

• Worms recording and tracking

1. A worm is selected in the 

first frame to be tracked. 

2. Image enhancements are 

performed on the sub frame 

that is created around the 

selected worm. 

3. The grayscale image is 

converted to a binary image 

and the post processing 

such as finding the centroid 

of the worm is performed. 

• Locomotion Features Analysis (5)

1. Morphology: Length, Centroid.

2. Posture: Bends, Bend count.

3. Motion: Motion state, Velocity.

4. Path: Path Curvature, Range.

Statistical Analysis: Wilcoxon 

Signed Rank test for worms of 

the same group; differences 

statistically significant when 

p ≤ 0.05. Kruskal-Wallis test to 

compare behaviors of all four 

groups during off state.

Results
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Analysis of C. elegans locomotion 

under internally localized MF.

The presence of gradient MF 

reduces speed [A], especially along 

the gradient of the MF [B], and 

range of motion path [C], increases 

bent count [D] and paused state[E]. 

• Internally localized MF, generated by magnetic nanoparticles, 

affects the dynamics of C. elegans locomotion (8).

• MF alone does not have an impact on worms’ locomotion.

• The gradient of the MF (up to 2x105 T/m, 1μm particles) is well 

above the threshold that may impact mechano-sensitive ion 

channels (103T/m) (9). 

• Findings are added to the discussion on C. elegans magnetotaxis

(6) and are among the few available data on the in vivo effect of 

internally localized MFs (7).

• The effect of localized MFs on animals' behavior, combined with 

use of particles with different properties, could pave the way for 

further studies on the sensitivity of biological systems to MFs. 
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Confirmation of nanoparticles 

uptake.  A) 1𝜇m particles, 

bright field microscopy. B) 

100nm particles, fluorescent 

microscopy. C) 40nm particles, 

scanning electron microscopy 

(SEM). Scale bars: 0.1mm. 

[A] [B]

[C] [D]

[E]

Next steps: To To test targeted neurons that could be affected by 

gradient MF, such as DVA neuron, with its mechanosensitive TRPN 

channels, and VB, VD, DB, DD motor neurons.

Next steps


